
1 

 

Large-Scale Turbulence Effects Simulations for Piston Phase Retrieval 

    
Artem M. Vorontsov

1,3
 ,  Mikhail A. Vorontsov

2,3
,  and  V.S. Rao Gudimetla

4
 

 

1. Moscow State University, Department of Physics, Vorob’evi Gory, Moscow, Russia 

2. University of Dayton, School of Engineering, 300 College Park Center, Dayton, OH, 45469-2951  

3. Optonicus  LLC, 711 E. Monument Ave. Suite 101, Dayton, OH 45402 

4. U. S. Air Force Research Laboratory, Directed Energy Directorate, Det. 15, 535 Lipoa Parkway, 

Kehie, Hi 96753 

 

ABSTRACT 

 

In the conventional atmospheric turbulence numerical simulation techniques based on the “split”-operator method, 

the turbulence-induced refractive index inhomogeneities are represented by a set of infinitely narrow (2D) phase 

distorting layers (phase screens). These conventional phase screens cannot represent large-scale refractive index 

inhomogeneities due to limitations imposed by computational grid size.  For this reason, this commonly used model 

cannot be applied for computer analysis of atmospheric optical systems that are affected by the presence of large-

scale turbulence eddies.  Among these systems are coherent imaging ladars, optical vibrometers and interferometers. 

In the classical Kolmogorov turbulence theory, the impact of the large-scale turbulence eddies are associated with 

the turbulence outer scale. Contrary to the conventional approach, in the computer simulation technique introduced 

here the turbulence-induced refractive index inhomogeneities are represented by a set of large-scale phase distorting 

screens that account for refractive index inhomogeneities which extend beyond the numerical grid correlation 

length. The results are applied to the analysis of piston phase fluctuations for the cases when the turbulence outer 

scale significantly exceeds the receiver aperture size.   We also analyze the piston phase fluctuations in deep 

turbulence conditions in presence of phase singularities (phase cuts and branch points), and show that the 

conventional definition of piston phase cannot be applied for this case. We introduce  a more general definition of 

piston phase which is useful for analysis in deep turbulence conditions. 

 

1. INTRODUCTION 

 

The efficiency of various optical systems based on coherent detection techniques heavily depends on the accurate 

prediction of statistical and temporal characteristics of the aperture averaged (piston) phase [1]. The rigorous 

estimation of the piston phase represents a quite challenging task, since the piston phase depends strongly on large-

scale turbulent eddies with sizes on the order of or exceeding the receive aperture diameter D [2]. Although the 

smaller size turbulent eddies can also affect piston phase values, their impact is less profound due to aperture 

averaging.  Thus, accurate estimation of piston phase cannot be performed without consideration of the largest size 

refractive index fluctuations. Within the framework of the fully-developed Kolmogorov turbulence model, the 

largest scale eddies are described by the turbulence outer scale L0, whose size, ranging from a few to hundreds of 

meters, can significantly exceed the receiver aperture diameter D. 

Predictive modeling of optical wave propagation and piston phase estimation is currently performed using the 

conventional representation of Kolmogorov’s turbulence by a set of statistically independent, infinitely thin two-

dimensional phase screens, which are spatially bounded inside a numerical grid domain. This conventional approach 

creates significant problems in the analysis of optical systems (including coherent detection systems) whose 

performance depends on large-scale turbulent eddies.  In the conventional numerical simulation techniques used for 

phase screen generation, the turbulence outer scale L0 is associated with the numerical grid size and exceeds D only 

by a few fold (typically from four to eight fold only). Because of practical considerations related to acceptable 

duration of the computation time and available computer memory, in most predictive wave-optics simulations the 

grid size typically doesn’t exceed 1024×1024 (more commonly 512×512) and accordingly, the corresponding 

analysis is limited by atmospheric conditions for which the outer scale L0 is on the order of the receiver aperture 

diameter D. Clearly, piston phase estimations based on wave optics simulations that utilize such conventional phase 

screen generation techniques, may not fully account for the impact of large-scale turbulent eddies and this may lead 

to significant errors. 

Another serious problem arises in modeling of the temporal dynamics of the piston phase in tracking of moving 

objects. In this application, wave propagation occurs under conditions of continuously changing optical axis 

direction and potential crossing of several atmospheric layers, which may have different turbulence properties over 
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the propagation path. All these propagation scenarios require consideration of a large region of the atmosphere, 

which may need significantly large almost impractical numerical grid size. In this paper we address these problems 

by applying for piston phase analysis the recently developed infinitively long phase screen (ILPS) technique [3]. In 

the following section we briefly describe the ILPS technique. Analysis of piston phase fluctuation variance is 

presented in section 3.    

 

2. GENERATION OF PHASE SCREENS WITH ARBITRARY LARGE TURBULENCE OUTER SCALE  

In the conventional phase screen generation technique,  a random function  ,S S m n , defined inside a square 

grid, is computed using Fourier transform of the product of refractive index fluctuation power spectrum function 

 ,k l  and the delta-correlated on the N N  grid complex random function  ,k l  with uniform probability 

distribution inside [0, 1] interval, as:  

\  

        , , , ,S m n FT k l k l m n    , (1) 

where  ,m n ,  , 1,...,m n N  and  ,k l ,  , 1,...,k l N ) are integer numbers corresponding to numerical grid 

pixels and  FT  is the Fourier transform operator. For statistically independent real and imaginary components of 

function  ,k l  the complex function S  is comprised of two statistically independent (component) phase screens. 

These functions are periodic with the numerical grid size period. The examples of the conventional phase screens 

are shown in Fig. 1. 

       

Fig. 1. Grey scale representation of the generated on 512×512 grid random phase screen realizations with different power 

spectrums: Kolmogorov (left) and Tatarskii (right). 

 

In the next step, consider computer generation of a phase screen S  that is defined inside an extended in one 

direction grid of size JN N , where J  is the grid extension factor ( 2,3,...J  ). As shown in [4] such phase screen 

can be obtained by summarizing J  conventional random phase screen functions  ,jS m n  (  1,...,j J ) as 

defined by expression (1) with exponential weighting factors:   

 

    
2

1

, ,

jmJ
i

JN

j

j

S m n e S m n





 ,  (2) 

where  1,..,m JN  and  1,..,n N , and 
2

1i   .  Note that the obtained new phase screen S  is a periodic 

function with the period JN  along x  and N  along y  directions. In the coordinate space,  the extended grid 

corresponds to   x yL L  area, where xL dxJN  and yL dyN  and dx  and dy  are pixel lengths in physics units. 

Examples of phase screens obtained on an extended grid (extended phase screens) are shown in Fig. 2. 

           
 

Fig. 2. Gray scale representation of the generated extended phase screens corresponding to Kolmogorov (top) and Tatarskii 

(bottom) power spectra on the numerical grid  containing  4*512×512 pixels (the grid extension factor J=4). 
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Generation of phase screens with arbitrary large turbulence outer scale L0 can now be performed by utilizing the 

extended phase screen technique described above. The idea is based on partitioning of the spectral domain of the 

refractive index power spectrum function   with a predefined outer scale value L0 onto 1H   ( H  is an integer 

number)  spectral sub-regions and generation of the extended phase screens  
h

S r , where  1,...,h H , with the 

power spectrum functions  
h

 κ  that  coincide with   inside these sub-regions and equal to zero otherwise. Here 

κ  is a vector in the spectral domain. Consider as an example partitioning of the spectral domain onto sub-regions in 

the form of concentric annuli  
1

H

h h
K


 centered at the coordinate origin. As shown in [3], phase screens 

corresponding to the power spectrum  with outer scale L0 can be obtained using summation of the extended phase 

screens  
h

S r  corresponding to the power spectrum functions  
h

 κ :   

   
1

H

h

h

S S


r r                                                                             (3) 

The extended phase screens  
h

S r  are defined inside coordinate domain 0xL dxJN L  , yL dyN  and are 

generated using the described above technique. An example of phase screen with Tatarskii power spectrum and 

0 7 yL L  is presented in Fig. 3. Note that fusion of the extended phase screens  
h

S r  that are generated inside 

coordinate domains with different pixel sizes hdx  and hdy , requires additional computation (approximation and 

filtering) to unify grid pixel sizes prior to the fusion [3].   

 

 

Fig. 3. Gray scale representation of phase screen corresponding to Tatarskii power spectrum with the outer scale L0 that is seven 

fold longer than the phase screen width. The phase screen is generated using numerical grid with 8*512×512 (J=8) pixels. 

 

In any numerical simulations of atmospheric optical systems, temporal dynamics of the atmospheric turbulence may 

play an important role. Conventional approach to include turbulence induced temporal variations in system 

performance is based on Taylor’s hypothesis of “frozen” refractive index inhomogeneities that are moved as a whole 

with a wind velocity v . In the split operator technique described, the wind induced temporal variations inside optical 

system aperture are simulated by introducing a set  lateral shifts of phase screens over distance dx , that corresponds 

to the grid pixel size in the direction orthogonal to the system optical. The characteristic time GT  for the complete 

update of the extended phase screen realization that is defined inside coordinate domain 0xL dxJN L  , yL dyN  

equals to xxxG vLvLT // 0 , where 
x

v  is x - projection of wind velocity vector v . For simplicity we assume 

that 0yv  . Thus the conventional approach of phase screens generation allows only analysis of temporal dynamics 

over time GT T  that is associated with impact of a single turbulence eddy of size L0. This restriction significantly 

limits ability to compute time-averaged characteristics that are dependent on the turbulence outer scale, such as 

piston phase, and hence require computer simulation of temporal dynamics over the time  GT T  that significantly 

exceeds the time of the extended phase screen update time. As shown in [3], this problem can be resolved by 

applying the infinitively-long (IL) phase screen technique.  

Assume a set of the extended phase screens  ,
IL IL

j j
S S m n , where  1,...,

IL
j J . Here 

IL
J pJ  and 2p   is an 

integer. Each of these extended phase screens are generated using the described above technique and are defined 

inside the extended grid with JN N  pixels. Consider the following defining the infinitely long phase screen 

expression 
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      
0

, , ,

J

IL IL

j j

j

IL

S m n m n S m jM n


  , (4) 

where    , cos /
j ILm n m J N  , / 2

IL
M J N ,  1m   and  1,...,n N . Note that the  ,

IL IL
S S m n  is   

defined inside an infinite in x -direction grid. As shown in [4], the random function 
IL

S  defined by (4) has 

approximately identical statistical properties as random functions 
1

IL

j

ILJ

j
S


. Note that in each grid point  ,m n  

function  ,
IL

j
S m n  is composed of only two statistically independent extended phase screen functions multiplied by 

the weighting factors  ,
j

m n and  
1

,
j

m n


: random function  realization 
IL

j
S  and  the shifted over M  pixels in 

x -direction random function 
1

IL

j
S


 as illustrated in Fig. 4. This means that for computer simulation of temporal 

dynamics over an arbitrary long time  GTT   using sequential shifts of phase screens,  there is no need for 

generation and keeping in the computer memory of large number ILJ  of random functions 
IL

j
S , (  1,...,

IL
j J ). In 

fact, the same goal can be achieved by generation and saving in computer memory only two extended phase screens 

(
IL

j
S  and

1

IL

j
S


). The weighted combination of these functions 

IL

j
S  as described by (4) can be used until the lateral 

shift of the phase screen 
IL

j
S  approaches the extended grid boundary. At this point an additional the extended phase 

screen
2

IL

j
S


 should be generated. The temporal dynamics inside the next time interval of duration  GT   is now defines 

by phase screen 
IL

S  that contains weighted combination of functions 
1

IL

j
S


 and

2

IL

j
S


. This process of regeneration of 

extended phase screens and their fusion can be repeated as many times as required for analyzing an optical system 

dynamics over arbitrary long time.  

 

 

 

 
 

 

Fig. 4. Graphical illustration of an infinitely long phase screen generation technique. 

 

3. STATISTICAL CHARACTERISTICS OF PISTON PHASE: NUMERICAL SIMULATION RESULTS  

 

3.1  Pupil-plane phase screen model. In this section we consider statistical characteristics of piston phase measured 

at a receiver telescope of diameter D which are obtained through numerical simulation of plane wave propagation 

through a moving with wind velocity  , 0
x

vv  atmospheric turbulence.   The commonly used definition of piston 

phase is given by the following expression:  

Extended phase screen 
IL

j
S  

Fusion of              and                                                          

Extended phase screen 
1

IL

j
S


 

IL

jj
S  

11

IL

jj
S


 

IL

jj
S  11

IL

jj
S


 

Section of phase screen 
IL

S  



5 

 

  

     2
1

,

Saa

t t d
S

   r r  (5)  

where  , t r is the instantaneous phase function defined inside the receiver telescope aperture area 
a

S . First 

assume that the impact of atmospheric turbulence can be described by a single thin phase screen that is located at the 

telescope pupil (pupil-plane phase screens). This model is commonly used for analysis of optical propagation in the 

Earth atmosphere at high elevation angles.  In the numerical simulations of  piston phase dynamics,  we used  pupil-

plane phase screens with Tatarskii refractive index fluctuation power spectrum with a fixed parameter Cn
2
 and 

different values of the turbulence outer scales L0 ranging from  L0 = D to  L0 =10D.  The numerical simulations were 

performed for receiver aperture of diameters D=3.6 m and D=1.0 m. We also assumed that all temporal changes in 

the piston phase are due to lateral translation of the phase screen with a constant wind speed v=(vx=1.0 m/sec,  0). In 

the numerical generation of phase screens the grid extension factor J in (2) was varied depending on the chosen 

value of the outer scale value L0.  We simulated piston phase dynamics in T =24 min time intervals. This time 

interval corresponds to translation through the receiver aperture D of the pupil plane turbulent screen of length 

400D. The total length of effective phase screen was controlled by setting parameter 
IL

J in (4).  

Examples of piston phase dynamics for two different values of the outer scale are presented in Fig. 5. The results 

suggest that increase of L0 leads to rapid increase of piston phase fluctuations. Using the piston phase temporal 

evolution curves as in Fig. 5, we estimated the standard deviation of piston phase fluctuations 

   
1/2

2

t t      .  In computation of   we substituted ensemble averaging by time averaging over 24 

min observation time. The results of  estimation are shown in Fig. 6 for two different receiver aperture diameters.   

The standard deviation of piston phase fluctuations rapidly increases with the outer scale increase reaching 2 value 

at L0  36m in the example considered. At the same time   only weakly depends on the receiver aperture size 

(compare two curves corresponding to D=3.6 m and D=1.0 m in Fig. 6).   

 

              

 

Fig. 5. Temporal evolution of piston phase for  L0 =D (left) and L0 =5D (right) for Cn
2 = 10-15 m-2/3, and D=3.6 m. 

 

  
 

Fig. 6. Piston phase standard deviation  vs turbulence outer scale  L0 for Cn
2 = 10-15 m-2/3 .   

 

Consider now the dynamics of piston phase for slant propagation paths. In these propagation scenarios, phase 

function  , t r of entering receiver aperture optical field is characterized by the presence of intensity scintillations, 

2phase cuts and branch points. The first question to ask is how to define piston phase for slant propagation 

t, min 

 t  

t, min 

 t  

 

L0/D0 

D= 1.0 m 

D= 3.6 m 
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conditions by taking into account sensitivity of piston phase value to geometry of 2phase cuts and branch points. 

Indeed in presence of these phase singularities, the commonly used definition of piston phase (5) doesn’t work since 

phase function  , t r  is not uniquely defined. Geometry of 2phase cuts in phase function  , t r  can be 

changed without having any impact on optical field complex amplitude that is proportional to  exp ,i t  r  but at 

the same time this change affects the piston phase since the aperture averaged value of phase function in (5) depends 

on 2phase cuts geometry. To address this problem, we introduce here a different definition of piston phase that is 

insensitive to presence of phase singularities. We define piston phase  
1

t as solution of the following equation: 

                                                               

      2

1
sin , 0

Sa

t t d   r r , (6) 

In this definition, one can add 2value to at any point r inside receiver aperture without changing piston 

phase  
1

t . The solution of (6) can be represented in the form:   

 

  

  

  

2

1 2

1

sin ,

tan
cos ,

S

S

a

a

t d

t
t d









 
 
 
  





r r

r r
, (7) 

Note that although the phase defined by (6)  is insensitive to 2 phase cuts (jumps), its value still is not uniquely 

defined because function 
1

tan


 in (7) is a multivalued function with infinite number of separated by  branches.   

The presence of branch points can result in uncertainty in selection of one or another branch of this function. A 

special technique based on analysis of phase function and location of phase singularities was applied to minimize 

impact of 2 phase cuts and branch points on the piston phase computation. The method of piston phase 

computation based on (7) was compared with the corresponding computations using conventional piston phase 

function  , t r . The comparative analysis was performed for D=0.5 m and the outer scale values ranging from 

L0=D to L0 =10 D. As illustrated in Fig. 7, the obtained values of standard deviations for the piston phases  t  and  

 
1

t  coincide with good accuracy which supports legitimacy of the introduced piston phase definition (7).  

Consider now results of analysis of piston phase as defined by (7) in deep turbulence conditions characterized by 

strong scintillations. In the numerical simulations we used three statistically independent extended phase screens. 

The first phase screen was located in the receiver telescope pupil plane at z=z1=0 and the second and third phase 

screens at distances z2= 0.025 kD
2
 and z3= 0.05 kD

2
 from the receiver plane.  All three phase screens were literary 

translated to account for wind speed v=(vx=1.0 m/sec,  0). 

 

 

 

Fig. 7. Dependence of piston phase standard deviation  on turbulence outer scale L0 for the case of pupil plane phase screen  

(Tatarskii power spectrum, Cn
2 = 10-15 m-2/3  and D0=0.5 m). The top curve corresponds to the conventional piston phase 

definition (5) and the bottom line to the piston phase definition (7) which is introduced for piston phase analysis in deep 

turbulence conditions.  

 

 

 

 

 

L0/D0 

 



7 

 

The results of piston phase dynamics over 24 min time interval are presented in Fig. 8 for two different values of the 

turbulence outer scale. 

 

           
 

 

Fig. 8. Temporal evolution of piston phase in deep turbulence conditions that are generated using three distant phase screens for  

L0 =5D (left) and L0 =10D (right) for Cn
2 = 10-15 m-2/3, and D=0.5 m.  

 

 
 

Fig. 9. Piston phase standard deviation  vs turbulence outer scale L0 for pupil plane and distant phase screens  

(Cn
2 = 10-15 m-2/3  and D0=0.5 m). 

 

Comparison of piston phase fluctuations for a single phase screen located either at the pupil plane or shifted a 

distance  z3= 0.05 kD
2
 from the receiver pupil (distant phase screen) are presented in Fig. 9, where the standard 

deviation of the piston phase is shown as a function of the outer scale. The results show that for L0 < 5D 

characteristic range of piston phase fluctuations as measured by its standard deviation is nearly identical for both 

pupil and remotely located phase screens. With increase of the outer scale, the piston phase fluctuations are smaller 

for the remotely located phase screen (deep turbulence).     
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